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Results are presented from an analytical study of intensification of convective 
single-phase heat transfer in a channel with a porous high-thermal-conductivity 
filler in the case of intensive external heating. 

The investigation [i] presented results of analytical and experimental studies of heat 
transfer in a channel with a permeable, high-thermal-conductivity filler under conditions of 
local thermal equilibrium between the porous material and the single-phase heat carrier in 
the case of moderate thermal loads. Here, we continue this study for conditions of forced 
flow under high thermal loads in the case where the finiteness of the value of the volume 
rate hv of interpore heat transfer becomes significant and there is a gradual increase in 
the temperature difference T -- t between the porous material and coolant. We will use the 
notation and scheme of sectional enumeration of the formulas and figures adopted in [i]. 

Forced heat transfer is distinguished by substantial mass rates of the heat carrier G 
and, thus, high values of the parameter Pe = G6c/X. Thus, as was shown in [i], in this case 
we can �9 the effect of axial heat transfer by conduction: %32T/3z 2 = 0. In this instance 
(~- O, 320/3~2 = 0), the system of equations (1.13)-(1.14) takes the form: 

~O 
= v ~ ( o - -  ~); ( I I .  1) oF 

Pe O@ = 72 (0 - -  @). ( I I .  2) 
oi 

Three boundary conditions are required for this case -- of the five conditions written earlier, 
for example (1.4)-(1.8), (1.4) and (1.8) are omitted. Here, if we seek @(~, ~) in the form 
~(~, ~) = ~(~)~(~), then Eq. (1.16) for determining ~(~) remains unchanged, while Eq. (1.17) �9 
is simplified: 

P e ( 1 + 4 ~ 2 / 7 2 ) ~ ' + 4 ~  = O. 

Boundary Conditions of the First and Third Kind. The solution of system (II.i)-(II.2), 
with boundary conditions (1'5)-(1.7), has the form 

0 = 2 ~ ,  A,~I~,~ cos(21~.~)exp [--4t~n~/P2 e (1 + 4~7,/?2)1; 
sin V. (11.3) 

E A,#,~ cos (2~,,~) 
O = 2 sin }~n (1 + 4[1~/? ~) 

1 

exp I--41~/Pe (1 + 41~/72)1; 

2 ~ Anexp [-- 4t~/Pe(l  + 41~7d7 )l; 
1 

(II.4) 

-(1 + 41~/~ 2) 

( I I .  5) 

m 2 " ~  exp [-- 4~2.~/Pe (I + 4~/?z)]. ( I I .  6) 
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Fig. II.I. Effect of rate of interpore heat transfer 
(~) on the change in the local heat-transfer criterion 
on the inlet section of a permeable matrix in a planar 
channel wall temperature (Bi + =): i) ~ § ~; 2) y~ = 
i00; 3) 31.6; 4) i0. 

The coefficients A n in Eqs. (11.3)-(11.6), as in (1.20), are the same as for the problem 
with local thermal equilibrium inside the porous material (T = t), while the characteristic 
values ~n are found from the same characteristic equation (1.22). A constant wall temper- 
ature T w = t~ (Bi § ~) corresponds to the values Pn = (2n-- i)~/2, n = i, 2, 3, ..., A n = l/ 

2 

~n" 

The solution of (11.3)-(11.6) differs from the results (1.19)-(1.26) with local thermal 
equilibrium (T = t) for the limiting case without allowance for axial heat conduction (Pe 
~, B n = 4~/Pe) by the appearance of the coefficient (i + 4p~/y2), which considers the effect 
of the finiteness of h v (volume rate of interpore heat transfer), y2 = hv~2/X. With ~a + ~, 

2 2 when (! + 4Pn/Y ) § i, we have t § T. Thus, analysis of the results (11.3)-(11.6) is best 
done to explain the effect of the parameter ~2 with a reduction in it from ?= = ~. 

In Fig. II.I, the results deviate by 1% from the limiting case (y2 = ~) at y2 = i000. 
With a further decrease in ~=, the rate of heat transfer from the channel wall decreases both 
on the inlet section and in the region of stabilized heat transfer. 

Using (11.6) we can obtain the following for the region of stable heat transfer 

Nu#~/Nuh~ = 1/(1 + 2 Nuk| ( I I .  7) 

The analogous expression for a circular channel is 

Nu#~/Nu~ = 1/(1 + 4Nuk~/yz). ( I I . 8 )  

These relations were used to construct the curves in Fig. 11.2, which reflect the reduction 
in the heat-transfer rate NuAk~ in the stable heat-transfer region with a finite value of T 2 
compared to the value of NUk~ corresponding to local thermal equilibrium (T = t) inside the 
permeable matrix (y2 = ~). 

it is easy to use (11.7) to determine the limiting value of y2 at which we should begin 
to consider the effect of the finiteness of the volumetric heat-transfer rate hv on the reduc- 
tion in heat transfer from the channel wall to the heat carrier flowing inside the porous 
material. For example, on the condition that the ratio Nu~/Nu~ decreases by no more than a 
small amount E, we should have the following: y2 > 2Nu~/~ for the planar channel and y2 > 
4Nu~/~ for the circular channel. 

It also follows from the data in Fig. II.I that a reduction in y2 is accompanied by an 
increase in the length ~A~ of the initial thermal section, the value of the latter for the 
planar channel being calculated from the expression: 

9 " Pe = 4 1 + 4~/?  a 1 + 4~/?  2 In 100 ~2~A~ ~ (1(1 -t- ~ 4~/?  2)4~/~a) ( I I .  9) 

This p r o p e r t y  i s  c l e a r l y  man i f e s t  from the  da ta  in Fig.  11.3,  where the  q u a n t i t y  ~AZ is  
r e p r e s e n t e d  in  p ropo r t i on  to the q u a n t i t y  ~Z, cor responding  to the  l i m i t i n g  va lue  y2 = ~. 

Boundary Condi t ions  of  the  Second Kind. With boundary cond i t i ons  (1 .6 ) ,  ( I . 1 1 ) ,  and 
(1.12) the s o l u t i o n  of  system ( I I . 1 ) - ( I I . 2 )  has the  form: 
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Fig. 11.2. Reduction in heat-transfer rate in a channel with 
a porous filler during a change in the rate of interpore heat 
transfer: i) planar channel; 2) circular channel. 

Fig. 11.3. Change in the length of the initial thermal section 
in a channel with a porous filler during a change in the rate 
of interpore heat transfer: i) planar channel, T w = const; 2) 
circular channel, T w = const; 3) planar channel, qw = eonst; 4) 
circular channel, qw = const. 

~ =  2 ~+~2 l E ( - ~ ) "  

I 

- -  cos (2~,~) exp l-- 41z~/Pe (1 "~ + 4~,,/~e')]; 
(11 .1o)  

0 = 2 [ j_ ~2 I 2 ~ (-- 1) n cos (2/~,,~) exp [-- 4[z~/Pe (1 q- 41z]/~,2)1; 
P e  " ' - -  l'-ff q- ',,,---~- --  ~ a 2 (1 --F 41an~/~ '2) (II. ii) 

l , n 

NuA = ( 0 ' ~ -  ~)-~ = {-~ ~ ~ ' ~ ' - - ~ " ~ '  exp [-- 4 ~ / P e  (I ~ 4 ~ / ~ z ) ] / - ~ ~  (1 Jr 4~ /~  z) . (11.12) 

All of the observations made with regard to the effect of the parameter y2 on the heat- 
transfer characteristics in channels with a porous filler in the absence of thermal equili- 
brium and boundary conditions of the first and third kind are also valid for the case of 
boundary conditions of the second kind. This follows, for example, from comparison of the 
data in Fig. II.i and Fig. 11,4. 

In the region of stable heat transfer, we obtain the following relations for planar and 
circular channels 

6 �9 N u ~  = 8 Nu~ 
1 .-]- 121u ~'' 1 q - 3 2 / ~  ~ (11.13) 

being special cases of (11.7) and (11.8) with Nu~ = 6 and Nu~ = 8, respectively. 

length ~A l of the initial thermal section in the planar channel is determined from The 
the expression 

600 ] (11.14) ~# l q-4M~l?2 In = 

V--~ = 4 ~  ~, (1 q- 4~ /7  ~) 
in which pl = ~. 

It follows from the data in Fig. 11.3 that with a constant external heat flow a reduction 
in y 2 causes a less substantial increase in the length of the initial section than in the case 
of boundary conditions of the first kind. 

It is also interesting to note certain results for the temperature fields on the section 
of stabilized heat transfer (~ > ~Al). It follows from (II.i0)-(II.Ii) that the temperature 
of the coolant increases linearly at any point of the channel cross section ~ = 2S/Pc + ~2 _ 
1/12, while the temperature difference 0 -- ~ = 2/72 remains constant both along and across the 
channel. Meanwhile, its absolute value is easily found through the principal characteristics 
of the process: T -- t = 2qw/hvS. 

888 



~ ~ ~  
, ~---._.. ~.~ ~ . . .  

6 ;,, ] / , --'--- ~ 

2 �9 'S" I 
f , I. I 

2 ~ s ~  2 ~ / P 8  

Fig. 11.4. Effect of the rate of interpore heat trans- 
fer (y2) on the change in the local criterion of heat 
transfer on the inlet section of a permeable matrix in 
a planar channel with a constant external heat flow 
qw = const; i) y2 = ~; 2) y2 = i000; 3) i00; 4) 31.6; 
5) lO.  

Evaluation of the Effectiveness of Using a Porous Filler in Channels. Most well-known 
methods of intensifying heat transfer in channels lead to an increase in hydraulic resistance. 
Here, depending on the criterion used to evaluate the effectiveness of the intensification, a 
positive result is obtained for a given heat e~changerwhen a certain relation is maintained 
between the ratios of the Nusselt numbers Nu*/Nuo and the drag coefficients ~*/~o for channels 
with intensification (Nu*, ~*) and without it (Nuo, ~o). Thus for example, it was shown in 
[2] that in the intensification of heat transfer in a turbulent flow in the channels of 
tubular heat exchangers, a positive effect, evaluated by three different criteria, is obtained 
with the satisfaction of the exponential relation ~*/Eo < (Nu*/Nuo) 3"s 

Let us examine the change in the mean heat-transfer coefficient a*/ao and drag coefficient 
~*/~o on the inlet section of a planar channel of width ~ during the motion of a single-phase 
heat carrier with a thermal conductivity %o and a number Pro as a result of the filling of the 
channel by a porous material with a thermal conductivity %. The material has a viscosity co- 
efficient ~, an inertial drag coefficient ~, and a mean particle size dp. The mass rate of 
the heat carrier G and the Reynolds number of the flow Re = GS/~ remain constant. 

An increase in the heat-transfer rate in the channel when it is filled with a permeable 
matrix is proportional to the ratio of the thermal conductivities %/%o of the porous material 
and heat carrier: 

g* k N--u* 
- - = - -  _ ( 1 1 . 1 5 )  
~o %0 Nuo 

Here, Nu* is the criterion of mean heat transfer in the channel with the filler, while the 
criterional equation for heat transfer in a channel without a filler Nuo = Nuo (Re, Pro, ~/ 
8) is chosen in relation to the flow regime. It follows from the example shown in Fig. II~ 
that the use of a porous filler is most effective in the laminar flow regime, when the quant- 
ity ~uu*/~uuo may become greater than unity. It decreases with an increase in the Reynolds 
number. However, the ratio %/%o is fairly easily monitored and may reach an appreciable 
value, especially in the flow of gaseous heat carriers. For example, for air %o ffi 0.032 W/ 
(m.K) and for porous metal with a limiting value ~ = 32 W/(moK) we have ~/~o = i000. Thus, 
an increase in the heat-transfer rate under these conditions ~*/~o = i000 is possible at least 
with low flow rates for the heat carrier. A particularly large value of %/%o may be reached 
at cryogenic temperatures 5-40~ when the thermal conductivity of high-purity copper and 
aluminum increases by almost one order and reaches % = 4000 W/(m.K). 

The drag coefficient of the inlet section of a planar channel in the case of laminar flow 
is calculated from the formula [4]: ~o = (24/Re + 0.61 8/I). The equation in [5] for cal- 
cualting the resistance of a porous material when the characteristic dimension 8 is used in 
the Reynolds number takes the form ~* = [2/Re + 2(~/~)/~]~2~. Then the sought value of the 
ratio of the drag coefficients is 

~_~ ~ [2/Re + 2 (~/~)/6] ~t~ : K(Re) 62~ (11.16) 
~o (24/Re + 0,6! 6/l) 
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Dependence of the ratio of the 
heat-transfer criteria in a planar channel 
with a porous filler (Nu*) and without the 
filler (Nuo) on the Reynolds number Re of 
the flow (I/~ = i0; Pro = i; qw = const): 
I) k/ko = i; 2) i0; 3) i00; 4) i000. 

Here, K(Re) is a slightly varying function. It follows from this that when thechannel is 
filled with a permeable matrix, the drag coefficient increases in proportion to the value of 
6=a, or, considering that ~ ~ dp ~, in proportion to (6/dp) 2, the square of the ratio of the 
channel width to the mean size of the particles of the porous material. Evaluation of this 
ratio for actual values ~ = 3.5 mm and ~ = 10 I~ m -2 gives avalue ~*/~o = I0 ~. 

Thus, the above method of intensifying heat transfer in channels differs from other well- 
known methods mainly in the substantial increase in both heat transfer a*/ao and drag ~*/Eo. 
The positive effect of intensification will be achieved for each specific case when there is 
a certain relationship between these two quantities. For example, it was established experi- 
mentally in [6] that filling a channel with a porous netted metal does not increase the amount 
of power expended on pumping the heat carrier compared to a smooth channel for the given pre- 
scribed thermal state of the heated channel wall. 

The widest application of porous metal inserts for intensifying heat transfer in chan- 
nels will be found under special conditions such as: when it is necessary to make the heat 
exchanger as small as possible; for sections with an extremely high heat flux; in the case 
of low rates of flow and limited reserves of the heat carrier; with a large available pres- 
Sure gradient, as well as to force the complete evaporation and condensation of coolant flows. 

Aspects of heat transfer and resistance in channels with a porous high-thermal-conduc- 
tivity filler during evaporation of the flow of 5mmt carrier were examined in [7, 8]. 
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